An Additivity Theorem for Plain Kolmogorov Complexity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contrasting Plain and Prefix-free Kolmogorov Complexity

Let SCRc = {σ ∈ 2n : K(σ) ≥ n + K(n) − c}, where K denotes prefix-free Kolmogorov complexity. These are the strings with essentially maximal prefix-free complexity. We prove that SCRc is not a Π1 set for sufficiently large c. This implies Solovay’s result that strings with maximal plain Kolmogorov complexity need not have maximal prefix-free Kolmogorov complexity, even up to a constant. We show...

متن کامل

Quantum Kolmogorov Complexity and Information-Disturbance Theorem

In this paper, a representation of the information-disturbance theorem based on the quantum Kolmogorov complexity that was defined by P. Vitányi has been examined. In the quantum information theory, the information-disturbance relationship, which treats the trade-off relationship between information gain and its caused disturbance, is a fundamental result that is related to Heisenberg’s uncerta...

متن کامل

Kolmogorov complexity and the second incompleteness theorem

We shall prove the second incompleteness theorem via Kolmogorov complexity.

متن کامل

Kolmogorov Complexity and the Recursion Theorem

We introduce the concepts of complex and autocomplex sets, where a set A is complex if there is a recursive, nondecreasing and unbounded lower bound on the Kolmogorov complexity of the prefixes (of the characteristic sequence) of A, and autocomplex is defined likewise with recursive replaced by A-recursive. We observe that exactly the autocomplex sets allow to compute words of given Kolmogorov ...

متن کامل

Complexity of Complexity and Strings with Maximal Plain and Prefix Kolmogorov Complexity

Peter Gacs showed [1] that for every n there exists a bit string x of length n whose plain complexity C (x) has almost maximal conditional complexity relative to x, i.e., C (C (x)|x) ≥ log n− log n−O(1). Here log(i) = log log i etc. Following Elena Kalinina [3], we provide a gametheoretic proof of this result; modifying her argument, we get a better (and tight) bound log n − O(1). We also show ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theory of Computing Systems

سال: 2012

ISSN: 1432-4350,1433-0490

DOI: 10.1007/s00224-012-9385-4